Chlorzoxazone or 1-EBIO increases Na(+) absorption across cystic fibrosis airway epithelial cells.

نویسندگان

  • L Gao
  • J R Yankaskas
  • C M Fuller
  • E J Sorscher
  • S Matalon
  • H J Forman
  • C J Venglarik
چکیده

Previous studies demonstrated that chlorzoxazone or 1-ethyl-2-benzimidazolinone (1-EBIO) enhances transepithelial Cl(-) secretion by increasing basolateral K(+) conductance (G(K)) (Singh AK, Devor DC, Gerlach AC, Gondor M, Pilewski JM, and Bridges RJ. J Pharmacol Exp Ther 292: 778-787, 2000). Hence these compounds may be useful to treat cystic fibrosis (CF) airway disease. The goal of the present study was to determine whether chlorzoxazone or 1-EBIO altered ion transport across Delta F508-CF transmembrane conductance regulator homozygous CFT1 airway cells. CFT1 monolayers exhibited a basal short-circuit current that was abolished by apical amiloride (inhibition constant 320 nM) as expected for Na(+) absorption. The addition of chlorzoxazone (400 microM) or 1-EBIO (2 mM) increased the amiloride-sensitive I(sc) approximately 2.5-fold. This overlapping specificity may preclude use of these compounds as CF therapeutics. Assaying for changes in the basolateral G(K) with a K(+) gradient plus the pore-forming antibiotic amphotericin B revealed that chlorzoxazone or 1-EBIO evoked an approximately 10-fold increase in clotrimazole-sensitive G(K). In contrast, chlorzoxazone did not alter epithelial Na(+) channel-mediated currents across basolateral-permeabilized monolayers or in Xenopus oocytes. These data further suggest that alterations in basolateral G(K) alone can modulate epithelial Na(+) transport.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulation of Cl(-) secretion by chlorzoxazone.

We previously demonstrated that 1-ethyl-2-benzimidazolone (1-EBIO) directly activates basolateral membrane calcium-activated K(+) channels (K(Ca)), thereby stimulating Cl(-) secretion across several epithelia. In our pursuit to identify potent modulators of Cl(-) secretion that may be useful to overcome the Cl(-) secretory defect in cystic fibrosis (CF), we have identified chlorzoxazone [5-chlo...

متن کامل

Bicarbonate and Chloride Secretion in Calu-3 Human Airway Epithelial Cells

Serous cells are the predominant site of cystic fibrosis transmembrane conductance regulator expression in the airways, and they make a significant contribution to the volume, composition, and consistency of the submucosal gland secretions. We have employed the human airway serous cell line Calu-3 as a model system to investigate the mechanisms of serous cell anion secretion. Forskolin-stimulat...

متن کامل

Understanding the cellular mechanism for inhaled hyperosmotic saline therapy for patients with cystic fibrosis. Focus on "Effect of apical hyperosmotic sodium challenge and amiloride on sodium transport in human bronchial epithelial cells from cystic fibrosis donors".

SINCE THE FIRST CLINICAL TRIALS on inhaled hyperosmotic saline therapy (HS) in cystic fibrosis (CF) patients (3, 9), HS has proven to substantially improve a number of critical measures of lung function and, thus, is now considered a first-line therapy for these patients (2). One mechanism believed to link CF genotype to phenotype is abnormalities in properties of the airway surface liquid (ASL...

متن کامل

cAMP stimulates bicarbonate secretion across normal, but not cystic fibrosis airway epithelia.

Adenosine 3',5'-cyclic monophosphate stimulates chloride (Cl-) secretion across airway epithelia. To determine whether cAMP also stimulates HCO3- secretion, we studied cultured canine and human airway epithelial cells bathed in a HCO3-/CO2-buffered, Cl(-)-free solution. Addition of forskolin stimulated an increase in short-circuit current that was likely a result of bicarbonate secretion becaus...

متن کامل

Effect of oral digoxin, topical ouabain and salbutamol on transepithelial nasal potential difference in patients with cystic fibrosis.

1. Airway epithelium in cystic fibrosis is characterized by a defect in chloride secretion across the apical membrane and an increase in sodium absorption. The increased rate of sodium absorption can be inhibited in vitro by ouabain, a Na(+)-K(+)-ATPase inhibitor, and in cystic fibrosis patients the number and activity of nasal epithelial Na(+)-K(+)-ATPase pumps is increased. 2. We have perform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 281 5  شماره 

صفحات  -

تاریخ انتشار 2001